Как защититься от перенапряжения. Защита от перенапряжения в частном доме

В настоящее время вопрос о стабильной величине напряжения электросети стоит достаточно остро. Сетевые организации не спешат делать реконструкции и модернизации линий электропередач, подстанций и трансформаторов. Тем временем ситуация только усугубляется, поэтому колебания напряжения в наших сетях довольно-таки частое явление.

Обновление 11.11.2018.
Для тех, кто сомневается в установке реле для защиты от перепадов (скачков) напряжения для своего жилья или верит в качество строительно-монтажных работ в современных новостройках. Ниже скриншот одного из последних .

Согласно ГОСТ 29322-92 напряжение в электросети нашей страны должно быть в пределах 230 В при одной фазе и 400 В между фазами. Но если вы живете в сельской местности или недалеко от города, то проблемы с постоянной величиной напряжения очень высоки, да и в самом городе этого исключать не стоит, особенно в старом жилом фонде. Перепады напряжения очень пагубно влияют на электроприборы в доме. Например, из-за низкого напряжения может сгореть холодильник или кондиционер (компрессор не запустится и перегреется), сильно снижается мощность микроволновки, тускло светят лампы накаливания. Ну а высокое напряжение просто «убьет» вашу бытовую технику. Уверен, что многие слышали про «отгорание нуля» в многоэтажках, и как целыми подъездами носят в мастерские ремонтировать бытовую технику.

Причины возникновения колебаний напряжения в сети бывают разные:

  • Замыкание одной из фаз на нейтраль, в итоге в розетке будет 380 Вольт;
  • Отгорание (обрыв) нуля, если у вас в это время низкая нагрузка, то напряжение будет тоже стремится к 380 В;
  • Неравномерное распределение нагрузки по фазам (перекос), в итоге на наиболее загруженной фазе напряжение снижается, и если к ней подключены холодильник и кондиционеры, то высокая вероятность, что они сломаются;

Пример видео, где показана работа реле напряжения

Решать проблему скачков напряжения в сетях помогают специальные устройства — реле контроля напряжения. Принцип действия таких реле достаточно прост, есть «электронный блок», который следит, чтобы напряжение находилось в заданных уставками пределах и при отклонениях сигнализирует расцепителю (силовой части), который отключает сеть. Все бытовые реле контроля напряжения включаются автоматически через определенное время. Для обычных потребителей достаточно задержки в несколько секунд, но для холодильников и кондиционеров с компрессорами нужна задержка в несколько минут.

Реле контроля напряжения бывают однофазные и трехфазные. Однофазные реле напряжения отключают одну фазу, а трехфазные — одновременно все три фазы. При трехфазном подключении в быту, следует применять однофазные реле напряжение, чтобы колебания напряжения на одной фазе, не привели к отключению других фаз. Трехфазные реле напряжения используют для защиты двигателей и других трехфазных потребителей.

Я разделяю приборы защиты от перенапряжений на три типа: УЗМ-51М от «Меандра», Zubr от «Электроникс» и все остальные. Никому ничего не навязываю — это мое личное мнение.

Реле напряжения Zubr (Rbuz)

Данное устройство предназначено для защиты от перепадов напряжения (отгорания нуля). Производят ЗУБР в Донецке.

Отмечу особенности этого реле напряжения .

Индикация напряжения на устройстве — показывает значение напряжения в реальном времени. Это достаточно удобно и необходимо для оценки ситуации с напряжением в сети. Погрешность показаний низкая, разница относительно высокоточного мультиметра Fluke 87 всего 1-2 Вольта .

Реле напряжения Zubr выпускают на различные номинальные токи: 25, 32, 40, 50 и 63А. Устройство при номинальном токе на 63А выдерживает в течение 10 минут ток 80А.

Верхнее значение по напряжению выставляется от 220 до 280 В с шагом 1 Вольт, нижнее — от 120 до 210 В. Время повторного включения от 3 до 600 сек., с шагом 3 секунды.

Я выставляю на реле напряжения Zubr, максимальное (верхнее) значение по напряжению 250 Вольт, а нижнее значение — 190 Вольт.

У приборов с индексом t в названии, например Zubr D63t , есть термозащита от внутреннего перегрева. Т.е. при увеличении температуры самого прибора до 80 градусов (например из-за нагрева контактов) — он отключается.

Реле напряжения Zubr занимает 3 модуля или 53 мм на дин-рейке и бывают только однофазными.

В паспорте и приведенных схемах подключения реле напряжения Зубр, не сказано про ограничения по току, но в старой документации, ранее указывалось, что не более 0,75 от номинального.

Схема подключения реле напряжения Zubr


В настоящее время, производители уверяют, что реле можно подключать по номиналу. Если номинал Зубра меньше номинала вводного автомата, тогда нужно применять в схеме подключения реле напряжения — контактор.

Гарантию на реле напряжения Zubr производитель дает целых 5 лет ! Имеет очень хорошие отзывы от коллег — форумчан . И также, как у Меандра на форуме МастерСити есть представитель Zubra, который не боится общаться публично. И кстати, показательно на примере УЗМ и Зубра, что представители производителей качественной продукции не боятся общаться на форумах.

Видео о реле напряжения Zubr

Update (07.06.15). В настоящее время реле напряжения Zubr, продают в России под другим названием Rbuz (слово Zubr наоборот).

Связано это с тем, что в России торговая марка Zubr зарегистрирована за другим производителем и поменялось только названием реле, а все компоненты остались прежними.

.

УЗМ-51М. Устройство защиты многофункциональное.

В настоящее время УЗМ-51М зарекомендовало себя надежностью и простотой подключения.

УЗМ-51М рассчитано на ток до 63А, занимает 2 модуля на дин-рейке (ширина 35 мм). При стандартном исполнении температура эксплуатации УЗМ от — 20 до +55 градусов, поэтому устанавливать в щите на улице не рекомендую. Есть правда и от -40 до +55, но такие мне в продаже не встречались, если только обращаться непосредственно в ЗАО «Меандр». Максимальная уставка по верхнему отключению напряжения 290 В, нижний порог срабатывания 100 В. Время повторного включения задается самостоятельно — это или 10 секунд или 6 минут. Может использоваться в сетях с любым типом заземления: TN-C, TN-S, TT или TN-C-S.

Схема подключения УЗМ-51М



Меандр производит еще два типа однофазных реле напряжения — это УЗМ-50М и УЗМ-16 . Главное отличие УЗМ-50М от УЗМ-51М, пожалуй только в том, что у последнего, как мы знаем можно выставить уставку по срабатыванию самостоятельно, а в УЗМ-50М — уставка «жесткая», по верхнему пределу напряжения — 265 В, а по нижнему — 170 В.

УЗМ-16 рассчитано на ток 16А, поэтому его ставят только на отдельный электроприемник. Например, чтобы не ожидать 6 минут пока включится УЗМ-51, холодильник можно подключить через УЗМ-16 , на котором устанавливают задержку на включение 6 минут, а на основном УЗМ-51М в 10 секунд.

Я выставляю на УЗМ-51М максимальное (верхнее) значение по напряжению 250 Вольт, а нижнее значение — 180 Вольт.

Меандр также выпускает трехфазное реле напряжение УЗМ-3-63, как я уже писал выше, такие реле используют в основном для защиты двигателей.

Хорошая надежная защита от перенапряжений. УЗМ не нужно включать с контактором, как это обычно делают с другими реле напряжения. Устройство производится в России. Гарантия на УЗМ 2 года. Что немаловажно, представитель Меандра присутствует на самом популярном форуме Mastercity, всегда проконсультирует по продукции, а также внимательно относится к комментариям пользователей форума, замечания которых в свое время и помогли улучшить УЗМ-51М.

Пример установки УЗМ-51М в трехфазном щите для загородного дома, где УЗМ установлены в каждую фазу.


Пожалуй один недостаток в УЗМ-51М относительно других реле напряжения — это отсутствие индикации напряжения. Но и разница в цене между УЗМ и реле напряжения с контактором, позволяет купить и поставить вольтметр отдельно.

Реле напряжения РН-111, РН-111М, РН-113 от Новатек

Данные реле напряжения производятся у нас в России. Как видно из заголовка у Новатека можно приобрести три типа реле напряжения.

РН-111 и РН-111М по параметрам практически одно и тоже устройство, главное различие у них в том, что у реле РН-111М есть индикация напряжения, а у РН-111 ее нет.

Верхний предел напряжения от 230 до 280 В, нижний — от 160 до 220 В. Время автоматического повторного включения от 5 до 900 сек. Гарантия на эти реле 3 года.

Схема подключения реле напряжения РН-111


Рассчитаны РН-111 на небольшие токи до 16А или мощность до 3,5 кВт, но для подключения более высокой нагрузки, РН-111 можно включать совместно с контакторами (магнитными пускателями).

Схема подлючения реле напряжения с контактором


Это значительно увеличивает стоимость, так как хороший контактор сейчас будет стоить около 4-5 тыс. рублей, понадобится бОльшее количество модулей в щитке, а также автомат для защиты катушки контактора. Вышеуказанная схема подключения реле напряжения с контактором для РН-111, справедлива для любого другого реле с учетом особенностей его схемы.

Реле РН-113 уже более улучшенное относительно РН-111, диапазоны по напряжению и время АПВ такие же, как у РН-111, но максимальный ток на который можно включать РН-113 до 32А или если по мощности до 7 кВт.

Схема подключения реле напряжения РН-113

Но я бы не стал этого делать, так как контакты у РН-113 достаточно слабые для провода сечением 6 мм 2 , а именно такое сечение необходимо для подключения на 32А.

Надежнее РН-113 также подключать с контакторами , без контакторов максимум на 25А. Я не использую в своих щитах реле напряжения от Новатек, поэтому фото позаимствовал у одного из электромонтажников с форума Avs1753.


Смотрится, конечно, красиво, но такое подключение занимает на 3-4 модуля больше и раза в два дороже по стоимости, чем если бы применили УЗМ-51М или Zubr.

А вот, что бывает, с РН-113, если его подключить без контакторов на 32А.

К сожалению какой-либо информации об испытаниях, как у УЗМ-51М и Зубра я не нашел на форумах.

Реле напряжения ТМ DigiTop

Также как и Зубр, данные реле выпускают в Донецке. Производитель выпускает несколько серий приборов с защитой от скачков напряжения.

Реле напряжения серии V-protektor предназначено только для защиты от перепадов напряжения. Выпускается на номинальные токи 16, 20, 32, 40, 50, 63 А в однофазном исполнении, имеет встроенную термозащиту от перегрева, срабатывающую при 100 градусах. Верхний порог срабатывания от 210 до 270 В, нижний — от 120 до 200 В. Время автоматического включения от 5 до 600 сек. Есть и трехфазное реле напряжения V-protektor 380, достаточно компактное 35 мм (два модуля), но максимальный ток в фазе не более 10А.

На однофазное реле напряжения Protektor гарантия 5 лет, на трехфазное реле только 2 года.

Схема подключения реле напряжения V-Protektor DigiTop


Диджитоп выпускает и совмещенное в одном устройстве реле напряжения и реле тока VA-protektor. Помимо защиты от перенапряжений, прибор обеспечивает и ограничение по току (мощности). Выпускают на номинальные токи 32, 40, 50 и 63 А. Все параметры по напряжению такие же, как и у V-protektor. По номинальному и максимальному току VA контролирует нагрузку и при превышении номинального отключает сеть через 10 мин., а максимального — через 0,04 сек. На дисплее прибора отображается и напряжение и ток. Гарантия на VA-protektor 2 года.

Ну и самый продвинутый из серии реле напряжений от ТМ DigiTop — многофункциональное реле МР-63. Собственно всё тоже самое, как и у предыдущего VA-protektor, только МР-63 показывает помимо тока и напряжения, еще и активную мощность .


Данное реле МР-63 и V-protektor проходили независимые испытания форумчан, отзывы средние.

Я постарался охватить в своей статье, наиболее распространенные устройства защиты от перепадов напряжения. Конечно, есть еще производители приборов для подобного рода защит, но информации об их применении очень мало.

Спасибо за внимание .

ЗАЩИТА ОТ ПЕРЕНАПРЯЖЕНИЙ

Внезапные повышения напряжения до значений, опасных для изоляции электроустановки, называются перенапряжениями. По своему происхождению перенапряжения бывают двух видов: внешние (атмосферные) и внутренние (коммутационные).

Атмосферные перенапряжения возникают при прямых ударах молнии в электроустановку или наводятся (индуцируются) в линиях при ударах молний вблизи от них. Внутренние перенапряжения возникают при резких изменениях режима работы электроустановки, например, при отключении ненагруженных линий, отключении тока холостого хода трансформаторов, замыкании фазы в сети с изолированной нейтралью на землю, резонансных, феррорезонансных явлениях и др.

Перенапряжения при прямых ударах молнии могут достигать 1000 кВ, а ток молнии - 200 кА. Разряд молнии обычно состоит из серии отдельных импульсов (до 40 шт.) и продолжается не более долей секунды. Длительность отдельного импульса составляет десятки микросекунд. Индуктированные перенапряжения достигают 100 кВ и распространяются по проводам линии электропередачи в виде затухающих волн. Атмосферные перенапряжения не зависят от номинального напряжения электроустановки и потому их опасность возрастает со снижением класса напряжения электрической сети. Коммутационные перенапряжения зависят от номинального напряжения электроустановки и обычно не превышают 4U ном. Из сказанного следует, что основную опасность представляют атмосферные перенапряжения.

Перенапряжения весьма опасны по своим последствиям. Пробив изоляцию, они могут вызывать КЗ, пожары в электроустановках, опасность для жизни людей и др. Поэтому каждая электроустановка должна иметь защиту от перенапряжений.

В качестве основных защитных средств от атмосферных повреждений применяют молниеотводы, разрядники и искровые промежутки. Главной частью всех этих аппаратов является заземлитель, который должен обеспечить надежный отвод зарядов в землю.

Молниеотвод ориентирует атмосферный заряд на себя, отводя его от токоведущих частей электроустановки. Различают стержневые и тросовые (на воздушных линиях) молниеотводы.

Стержневые молниеотводы устанавливают вертикально. Они должны быть выше защищаемых объектов. Зона защиты одиночного стержневого молниеотвода - пространство, защищенное от прямых ударов молнии. Эта зона имеет вид конуса, образующая которого имеет вид кривой линии (рис. 1). На рис. 1 приняты следующие обозначения: h x - высота защищаемого объекта; h a - активная часть молниеотвода, равная превышению молниеотвода над высотой объекта; h - высота молниеотвода. При большой протяженности или ширине объекта устанавливают несколько молниеотводов. Расстояние между молниеотводом и защищаемым объектом должно быть не более 5 м.

Зона защиты одиночного стержневого молниеотвода

Тросовые молниеотводы подвешивают на опорах линий электропередачи напряжением 35 кВ и выше над проводами фаз. Тросы выполняют стальными и соединяют спусками с заземлением опор. Сопротивление заземления опоры при этом не должно превышать 10 Ом.

Разрядник представляет собой комбинацию искровых промежутков и дополнительных элементов, облегчающих гашение электрической дуги в искровом промежутке. Разрядники по исполнению делятся на трубчатые и вентильные, а по назначению - на под станционные, станционные, для защиты вращающихся машин и др.

Защитное действие разрядника заключается в том, что проходящий в них разряд ограничивает амплитуду перенапряжений до пределов, не представляющих опасности для изоляции защищаемого объекта. Возникающая при этом в разряднике электрическая дуга гасится после исчезновения импульсов перенапряжения раньше, чем срабатывает защита от КЗ, и, таким образом, объект не отключается от сети.

Каждый из разрядников, независимо от его типа и конструкции, состоит из искрового промежутка, один из электродов которого присоединяется к фазному проводу линии, а другой - к заземляющему устройству непосредственно или через добавочное сопротивление.

Через хорошо заземленный искровой промежуток вслед за импульсным током, возникающим после пробоя перенапряжением, проходит сопровождающий ток нормальной частоты (50 Гц), обусловленный рабочим напряжением. Разрядник должен обладать способностью быстро погасить сопровождающий ток после исчезновения перенапряжения. Для этого разрядник снабжают помимо искрового промежутка последовательно включенным с ним специальным элементом, обеспечивающим гашение сопровождающего тока.

Гашение сопровождающего тока обеспечивается двумя способами:

в трубчатых разрядниках - специальным дугогасительным устройством;

в вентильных разрядниках - активными сопротивлениями с нелинейной (зависящей от приложенного напряжения) характеристикой (рис. 2, а).

Нелинейная характеристика (рис. 2, б) должна быть такой, чтобы при перенапряжениях сопротивление разрядника было малым. При рабочих напряжениях сопротивление разрядника должно быть большим, чтобы гасился сопровождающий ток.

. Вентильный разрядник: а - схема; б - защитная характеристика

Трубчатые разрядники применяются как основное средство для защиты изоляции линии электропередачи и как вспомогательное средство защиты изоляции оборудования подстанций. Они выполняются с номинальными напряжениями 6, 10, 35 кВ.

Основной частью разрядника является трубка из твердого газогенерирующего диэлектрика (фибра, фибробакелит у разрядников серий РТ, РТФ; винипласт - у разрядников серии РТВ). Разрядник (рис. 3) имеет 2 искровых промежутка: внешний (3) и внутренний (2). Внешний изолирует трубку от постоянного соприкосновения с токоведущей частью, находящейся под напряжением. При пробое искровых промежутков под воздействием высокой температуры электрической дуги трубка 1 разлагается и генерирует газ (в основном водород), облегчающий гашение электрической дуги. Необходимость гашения дуги объясняется тем, что после прохождения перенапряжения по искровым промежуткам проходит сопровождающий ток разрядника, обусловленный рабочим напряжением электрической сети и имеющий частоту 50 Гц. Поэтому в обозначении разрядника, кроме букв, присутствует дробь, где числитель указывает номинальное напряжение, а знаменатель - пределы сопровождающего тока, успешно отключаемого разрядником. Например, обозначает: трубчатый разрядник на 10 кВ, отключающий сопровождающий ток (равный току КЗ) от 0,5 до 7 кА.

Устройство трубчатого разрядника

Вентильные разрядники предназначены для защиты от атмосферных перенапряжений оборудования электростанций и подстанций, главным образом, силовых трансформаторов. Основными элементами разрядника являются многократные искровые промежутки и соединенные последовательно с ними нелинейные сопротивления в виде дисков из вилита. Термин «нелинейное сопротивление» означает, что сопротивление зависит от проходящего по нему тока. Сопротивление вилита уменьшается при возрастании проходящего по нему тока. Вилит не влагостоек, поэтому его помещают в герметизированный фарфоровый корпус. Для защиты подстанций используют разрядники серий РВП (разрядник вентильный подстанционный) и РВН (разрядник вентильный низковольтный).

. Устройство вентильного разрядника серии РВП

Разрядник работает следующим образом. При перенапряжениях искровые промежутки 3 пробиваются, и по вилитовым дискам блока 4 ток проходит в землю. Сопротивление вилита резко уменьшается и перенапряжение на оборудование подстанции не поступает. При исчезновении перенапряжения сопротивление вилита возрастает, дуга в искровом промежутке гаснет, и ток через разрядник не проходит. Специальная защита воздушных линий от атмосферных перенапряжений не устанавливается, так как молния может ударить в линию в любой ее точке. Все воздушные линии оборудуются устройствами АПВ, т. к. после КЗ, вызванного перенапряжением, и отключения линии, ее изоляционные свойства восстанавливаются. Поэтому повторное включение линии оказывается в большинстве случаев успешным. В настоящее время широкое распространение получают ограничители перенапряжений (ОПН), представляющие собой нелинейные активные сопротивления без специальных искровых промежутков. ОПН обычно изготовляют путем спекания оксидов цинка и других металлов. В полученной после спекания поликристаллической керамике кристаллы окиси цинка имеют высокую проводимость, а межкристальные промежутки, сформированные из оксидов других металлов, имеют высокое сопротивление. Точечные контакты между кристаллами окиси цинка, возникающие при спекании, являются микроваристорами, т. е. имеют так называемые р-n переходы. Защитная характеристика ОПН имеет вид, близкий к нелинейной характеристике вентильного разрядника (рис. 2, б). Однако оксидно-цинковые сопротивления имеют значительно более высокую нелинейность, чем вилитовые сопротивления. Благодаря этому в ОПН нет необходимости использования искровых промежутков. Выпуск вентильных разрядников в нашей стране прекращен в 90-е годы из-за высокой трудоемкости производства и настройки искровых промежутков. При том существенно расширена номенклатура выпускаемых ОПН. Достоинствами ОПН, по сравнению с вентильными разрядниками, являются взрывобезопасность, более высокая надежность, снижение уровня перенапряжений, воздействующих на защищаемое оборудование, и возможность контроля старения сопротивлений по току в рабочем режиме. Существенным недостатком ОПН и вентильных разрядников является невозможность обеспечения с их помощью защиты от квазистационарных перенапряжений (резонансные и феррорезонансные перенапряжения, смещение нейтрали при перемежающейся электрической дуге). Не следует забывать, что при длительных перенапряжениях происходит интенсивное старение ОПН, и они могут отказать, т. е. повредиться.

В распределительных электрических сетях в системе защиты от перенапряжений основное внимание уделяют защите оборудования подстанций. На рис. 5 приведены два варианта защиты подстанций напряжением 6-10 кВ от атмосферных перенапряжений при присоединении их непосредственно к воздушной линии (рис. 5, а) и кабельным вводом (рис. 5, б). В первом случае (а) на линии устанавливают два комплекта трубчатых разрядников F1, F2, один из которых (F2) - на концевой опоре линии, а F1 - на расстоянии 100-5-200 м от F2. В случае (б) комплект разрядников F2 устанавливают на конце кабеля, причем его заземление соединяют с оболочкой кабеля. Это необходимо для уменьшения перенапряжений, поступающих на подстанцию. Второй комплект F1 устанавливается при длине кабельного ввода менее 10 м. Расстояние между F1 и F2 равно 100-5-200 м. Вместо F2 при длине кабельной вставки более 50 м рекомендуется устанавливать вентильные разрядники.

Защита подстанции от перенапряжений: а - подстанция непосредственно присоединена к ВЛ; б - подстанция присоединена к ВЛ кабельным вводом

Кроме трубчатых разрядников непосредственно на подстанциях устанавливают вентильные разрядники (или ОПН) FV3 и FV4 на сторонах высшего и низшего напряжений.

Сочетание трубчатые разрядники - вентильный разрядник (или ОПН) применяется по следующей причине.

Трубчатые разрядники не могут надежно защищать трансформаторы и вращающиеся электрические машины от перенапряжений, т. к. имеют грубые защитные характеристики. Такую защиту обеспечивают вентильные разрядники. Назначение трубчатых разрядников заключается в том, чтобы предотвратить повреждение вентильных разрядников от приходящих из линии волн перенапряжений. Трубчатые разрядники уменьшают амплитуду и крутизну импульсов перенапряжений до величин, безопасных для вентильных разрядников и ОПН.

В настоящее время при новом строительстве, реконструкции и техническом перевооружении объектов Федеральной сетевой компании России применение вентильных и трубчатых разрядников не рекомендуется по причине их низкой надежности и из-за недостатков в технических характеристиках.

Скачки напряжения распространены в бытовых электросетях. Регулярные сбои параметров сети приводят к быстрому выходу из строя домашней техники. А это уже является прямой угрозой для организма человека.

Перенапряжение – состояние электросети, при котором напряжение выходит за лимиты рабочего. Допустимый диапазон для электросетей 0, 38 кВ: 0,198..0,242 для однофазных, 0,342..0,418 для трехфазных. Т.е. отклонение колеблется в пределах 5-10% на вводах к потребителям.

Причины возникновения

Причины возникновения перенапряжений в сети:

  1. Удары молнии. При этом по проводам течек ток, с импульсными напряжениями в несколько десятков тысяч вольт.
  2. Ошибки операторов при обслуживании оборудования на питающих подстанциях. Случается из-за несогласованности регулирования напряжения на ПС.
  3. Неправильное соединение проводов в щитовой. Происходит, когда на ноль, подключают фазу.
  4. Нарушение в нейтрали. Возникает при обрывах или обгорании проводника. Является самой распространённой причиной возникновения перенапряжений в бытовых сетях. При разрыве, не происходит перекос фаз, чем и вызываются скачки напряжений.

Опасность для электроприборов

Бытовая техника рассчитывается на присутствие скачков электроэнергии, превышающих рабочие значения в три раза (до 1000 В). Если происходит аварийная ситуация, то значение скачков может превышать предельно допустимые нормы. При этом происходит перегрев кабелей, пробой изоляционной оболочки, и как следствие искрение и возникновение пожаров. КЗ могут возникать даже на участках электросети без нагрузки.

Защита от импульсных перенапряжений

Мерами безопасности являются УЗИП (устройства защиты от импульсных перенапряжений).

Различают два вида:

  1. Полная. Предусматривает устройство приборов на вводе в квартиры, а также перед каждым бытовым электроприбором.
  2. Частичная. В этом случае аппараты устанавливаются только в электрощитовой.

Современные меры безопасности УЗИП

Виды защит от перенапряжения:

  • Реле. Производит аварийное отключение бытовых приборов при достижении электросетью критических параметров и автоматическое включение после нормализации напряжения.

Используются для защиты всей сети, так и для каждого электроаппарата в отдельности.

  • Стабилизаторы напряжения – .
  • Современные модели устроены на микропроцессорной базе, имеют дисплей и многофункциональный интерфейс. Совместное использование УЗО и ДПН (датчика повышенного напряжения). Последний прибор осуществляет мониторинг параметров сети, а УЗО производит аварийное отключение.

Устройства, предназначенные для:

  • мониторинга симметрии напряжения в бытовых электросетях;
  • предотвращения асимметрии нагрузки;
  • правильность последовательности фаз в трехфазных сетях.

Применяются в системах с автоматическим управлением.

Импортное оборудование очень требовательно к качеству электросетей. Отсутствие надлежащих мер контроля электричества приводит к быстрому износу и полному выходу из строя электроаппаратов. Реле контроля фаз также предназначено для стабилизации параметров питающей сети.

Преимущества:

  1. работа на микропроцессорной базе;
  2. высокая точность показаний и надёжность;
  3. простота конструкции.

Принцип работы основан на явлении самовозврата параметров. При подаче напряжения устройство осуществляет контроль. Происходит аварийное отключение, когда возникают сбои.

Места установки :

  • для защиты отдельно стоящего оборудования или группы электроустановок непосредственно перед розеткой;
  • для общедомовой защиты на DIN-рейку вводно-распределительного устройства.

При одновременном пропадании нескольких фаз, устройство срабатывает без задержки во времени.

Устройство автоматического ввода резервного питания

Причины срабатывания реле:

  1. перекос фаз;
  2. несоответствие подключение фазных проводов;
  3. обрыв фазного кабеля.

Типы стабилизаторов

Различают феррорезонансные, симисторные, релейные стабилизаторные электроприборы и сервоприводные стабилизаторы.

Феррорезонансные

В системе трансформатор-конденсатор использует эффект феррорезонанса. Выполняют стабилизацию параметров в выбранном диапазоне нагрузок. Малораспространенный тип из-за сложностей внедрения в бытовые системы электоснабжения и высокой стоимости.

Преимущества:

  • точность срабатывания;
  • длительный срок эксплуатации;
  • быстродействие;
  • надёжность работы.

Недостатки:

  • громоздкость;
  • искажение синусоидальности;
  • малый диапазон нагрузок;
  • невозможность работы в режиме ХХ и перегрузе.

Симисторные

Принцип действия – срабатывание сигнала по релейному типу. Разъединение цепи осуществляется симисторами.

Преимущества:

  • при получении сигнала стабилизаторы способны к быстрому коммутированию;
  • отсутствие шума;
  • плавность регулировки.

Недостатки :

  • завышенная стоимость;
  • ступенчатая регулировка.

Релейные

Используются для предохранения электроаппаратов малой мощности. Прибор включает в себя силовое реле и автотрансформатор. При изменении параметров внешней сети происходит срабатывание релейного элемента и переключение обмоток автотрансформатора.

Преимущества :

  • быстродействие.

Недостатки :

  • ступенчатость регулировки;
  • невысокая точность срабатывания;
  • искажение синусоидальности.

Сервоприводные

Устроены по схеме реостата. Электропривод при изменениях параметров электросети перемещает подвижные контакты на обмотке автотрансформатора до необходимого положения.

Преимущества:

  • высокая чувствительность электроприбора к нарушению параметров сети;
  • отсутствие синусоидальных искажений;
  • плавность управления.

Недостатки :

  • низкая надёжность;
  • медленное срабатывание электроники.

Автоматический стабилизатор напряжения

Работа в сетях 220 В

Монтаж выполняется в соответствии с требованиями электробезопасности – без нагрузки. Присоединение в цепь выполняют непосредственно после счётчика. Соединение фазного провода – с разрывом.

В устройстве имеется три контакта:

  • Ноль. Нейтраль подключается без разрыва.
  • «Вход». На этот контакт присоединяется провод, идущий от вводного автомата.
  • «Выход». Присоединяется к отходящему на потребителей проводнику.

В случае четырёхконтактного подключения схема аналогична. Фазные жилы и нейтраль, идущие от главного автомата, присоединяются путём разрыва на стабилизатор.

  • Не реже 1 раза в год необходимо проводить осмотр.
  • При работе приборы не производят звуков. Посторонние шумы говорят о нестабильности работы.

После установки производится пробное включение – без нагрузки. Если происходит отключение сети, то монтаж выполнен с ошибками.

Существуют переносные стабилизирующие устройства. Представляют собой короб с вилкой и несколькими розетками для подключения электроприборов. Являются переходниками между питающей сетью и нагрузкой.

Работа в сетях 380 В

Эксплуатация стабилизаторов в сетях 380 В:

  • Стабилизаторы должны следить за равномерностью распределения тока по фазам.
  • Применение трехфазных устройств необходимо в тех случаях, когда в сети 380 Вольт будут использоваться электродвигатели.
  • Как правило, все потребители 220В, поэтому целесообразно применять комплект из 3 однофазных стабилизаторов. При выходе из строя одного из трёх устройств, подача электричества не прекратится, в отличие от случая с трехфазным. Замена вышедшей из строя фазы обойдётся в 3 раза дешевле.

При выборе стабилизирующего аппарата необходимо учитывать: стоимость оборудования, срок эксплуатации, быстродействие, удобство интерфейса, устройство регулировки, характеристику нагрузки бытовой сети.

Место установки защитных устройств

Приборы устанавливают в специально оборудованных помещениях – электрощитовых. Если такого нет, то местом установки могут стать тамбуры, кладовые, подсобки. Главное условие для комнаты – обеспечение качественной вентиляции.

При установке стабилизаторов в утопленные полки и ниши, необходимо отступить от стен на 10 см для исключения перегрева соседних поверхностей. Также рядом не должно быть легковоспламеняющихся материалов – пластиковых панелей, синтетических штор и т. д.

Выбор стабилизирующих устройств

Подбор стабилизаторов:

  • По типу сети. На жилые дома с трехфазной электросетью устанавливается минимум один комплект для трехфазной нагрузки.

Однофазный устанавливают для потребителей, запитанных от сети

  • По мощности. Характеристика прибора должна быть на ступень выше, отпущенной потребителю нагрузки. Для таких случаев следует учесть нагрузку всех защищаемых электроустановок.

В расчётах используют полную мощность, учитывающую (актив и реактив).

  • Значение пускового тока. Учитывается при выборе защитных устройств как холодильники, насосы и другие, т. е. те, схема которых содержит асинхронные двигатели. Для этих аппаратов стабилизаторы выбирают с запасом до 25%.

Для защиты устройств электроосвещения используются стабилизаторы с точностью не менее 3%. Именно с этого значения можно зафиксировать мерцание ламп.

Стоит ответить на вопрос, что лучше один стабилизатор на дом или несколько для каждого электроприбора?

Для маломощных систем подходит схема установки одного комплекта на вводе. Такой способ защиты экономически оправдан.

Если предполагается использование большого количества электроустановок, то целесообразно ставить защиту на каждый прибор или на группу с учётом важности и экономической целесообразности.

ИБП используют для подключения дорогостояще техники: телевизоры, холодильники, компьютеры и т. д.

Установка реле напряжения. Видео

Каким образом осуществляется установка реле от защиты от перенапряжения, рассказывает это видео.

При проектировании электроснабжения жилого дома следует особое внимание уделить защите сети от перенапряжений. Применение комплексных мероприятий позволяет снизить риск аварийной ситуации до минимума. Также следует не забывать об элементарных правилах использования и содержания электроприборов. Это не только защищает жизнь людей, но и экономит средства на последующие ремонт и замену испорченного электрооборудования.

Молния - это мощный электрический разряд (рис. 5.32), образующийся при сильной электризации туч или земли. Разряды молнии могут возникать внутри облака, между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Электрическое поле облака имеет огромную напряженность - миллионы В/м. Когда большие противоположно заряженные области подходят достаточно близко друг к другу, некоторые электроны и ионы, пробегая между ними, создают светящийся ионизированный канал, по которому за ними устремляются остальные заряженные частицы. По мере продвижения ионизированного канала (лидера) к земле напряженность поля на его конце усиливается, и под его действием из выступающих на поверхности земли предметов выбрасывается ответный стример, соединяющийся с лидером. Так происходит молниевый разряд. Эта особенность молнии используется для создания молниеотвода.

Все производственные объекты должны быть оборудованы системой молниезащиты. Молниезащита промышленных зданий является обязательным элементом безопасности, способным предотвратить серьезный материальный ущерб и человеческие жертвы.

Первичное действие молнии - прямой удар - опасен термическим и механическим разрушением здания. При прямом попадании молнии в провода, в линии возникает перенапряжение, вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников.

Вторичное действие молнии характеризуется образованием электрических токов в замкнутых токопроводящих системах здания (электропроводке, трубопроводе и пр.). Процесс переноса электрических потенциалов, возникших при ударе молнии, по внешним металлоконструкциям (трубопроводам) в защищаемое здание может привести к пожару, взрыву, выходу из строя электрического и электронного оборудования (табл. 5.11).

Возможные последствия молнии

Проявления

опасности

Поражающие факторы

Последствия

Прямой удар молнии в здание

Разряд до 200 кА, напряжением 1000 кВ, температура 30 000°С

Поражение людей, разрушение частей здания, пожары

Удаленный разряд при ударе молнии в коммуникации (до 5 км и больше)

Занесенный потенциал молнии через провода электроснабжения и металлические трубопроводы (возможный импульс перенапряжения - сотни кВ)

Поражения человека, нарушение изоляции электропроводки, выход из строя оборудования, потери баз данных, сбои в работе компьютерных систем

Близкий (до 500 м от здания) разряд молнии

Наведенный потенциал молнии в токопроводящих частях здания и электроустановках (возможный импульс перенапряжения - десятки кВ)

Поражение человека, нарушение изоляции электропроводки, возгорания, выход из строя оборудования, потери баз данных, сбои в работе компьютерных систем

Коммутации и короткие замыкания в цепи низкого напряжения

Импульс перенапряжения (до 4 кВ)

Выход из строя оборудования, потери баз данных, сбои в работе компьютерных систем

Еще одним из опасных проявлений молнии является ударная волна. Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию взрывчатого вещества. Он вызывает появление ударной волны, опасной в непосредственной близости.

Например, при скорости нарастания тока 30 000 ампер за 0,1 миллисекунду и диаметре ионизированного канала 10 см могут наблюдаться следующие давления ударной волны:

  • - на расстоянии от центра 5 см (граница светящегося канала молнии) - 0,93 МПа (разрушение конструкций, тяжелые контузии человека);
  • - на расстоянии 0,5 м - 0,025 МПа (разрушение непрочных строительных конструкций и травмы человека);
  • - на расстоянии 5м - 0,002 МПа (выбивание стекол и временное оглушение человека).

Опасное действие молнии в отношении человека может проявляться в следующем: контактное поражение (от наведенных потенциалов на металлические части оборудования), офтальмологическое поражение (вспышка молнии), шаговое напряжение (при растекании тока молнии в земле), тупая травма (вследствие действия ударной волны), прямой удар (прямое попадание молнии в человека).

При проектировании системы молниезащиты учитывается назначение объекта, особенности его конструкции и географическое местоположения региона, напрямую связанное с интенсивностью грозовой деятельности.

Молниезащита промышленных зданий разрабатывается исходя из типа опасного воздействия, возникающего при электрическом разряде молнии. Все промышленные объекты нуждаются в индивидуально подобранных мерах защиты от воздействия атмосферных перенапряжений. Наибольшей опасности подвергаются высотные объекты, поэтому в первую очередь в защите нуждаются высотные здания, мачты, трубы, опоры ЛЭП.

Первичным источником повреждений является ток молнии. В зависимости от точки поражения различают следующие источники повреждений (табл. 5.12) :

  • - S - удар молнии в здание (сооружение);
  • - S2 - удар молнии вблизи здания (сооружения);
  • - S3 - удар молнии в линии коммуникаций;
  • - S4 - удар молнии вблизи линий коммуникаций.

В зависимости от характеристик защищаемого здания (сооружения) удар молнии может нанести различные повреждения. На практике при оценке риска различают три основных типа повреждений, которые могут появиться в результате удара молнии:

  • - D - вред живым существам;
  • - D1 - физическое повреждение здания (сооружения) и (или) линий коммуникаций;
  • - D3 - отказ электрических и электронных систем.

Повреждение здания (сооружения) вследствие поражения молнией может быть ограничено частью сооружения или может простираться на несколько сооружений. Повреждения могут воздействовать на прилегающие к сооружению территории или окружающую среду (например химическое или радиоактивное заражение местности).

Каждый тип повреждения, один или в сочетании с другими, может привести к различным прямым и косвенным потерям в защищаемом сооружении. Тип возникающих потерь зависит от характеристик сооружения и его частей. Следует рассматривать следующие типы потерь:

  • - L - связанные с гибелью и травмированием людей;
  • - L2 - с полным или частичным разрушением общественных коммуникаций;
  • - L3 - с нанесением вреда объектам культурного назначения;
  • - L4 - экономические (связанные с разрушением здания (сооружения), его части и (или) нарушением или прекращением деятельности).

Установленные комбинации возможных повреждений и потерь в зависимости от типа источника }