Перевод в различные системы счисления теория. Арифметические операции с числами в позиционных системах счисления

1.5 Арифметические операции в различных системах счисления

1.5.1 Сложение и вычитание

В системе с основанием я для обозначения нуля и первых с-1 натуральных чисел служат цифры 0, 1, 2, ..., с - 1. Для выполнения операции сложения и вычитания составляется таблица сложения однозначных чисел.

Например, таблица сложения в шестеричной системе счисления:

Сложение любых двух чисел, записанных в системе счисления с основанием с, производится так же, как в десятичной системе, по разрядам, начиная с первого разряда, с использованием таблицы сложения данной системы. Складываемые числа подписываются одно за другим так, чтобы цифры одинаковых разрядов стояли по вертикали. Результат сложения пишется под горизонтальной чертой, проведенной ниже слагаемых чисел. Так же как при сложении чисел в десятичной системе, в случае, когда сложение цифр в каком-либо разряде дает число двузначное, в результат пишется
последняя цифра этого числа, а первая цифра прибавляется к результату сложения следующего разряда.

Например,

Можно обосновать указанное правило сложения чисел, используя представление чисел в виде

Разберем один из примеров:

354 7 =3*7 2 +5*7 1 +4*7 0

263 7 =2*7 2 +6*7 1 +3*7 0

(3*7 2 +5*7 1 +4*7 0) + (2*7 2 +6*7 1 +3*7 0) =

=(3+2)*7 2 +(5+6)*7+(3+4)

5*7 2 +1*7 2 +4*7+7

Последовательно выделяем слагаемые по степени основания 7, начиная с низшей, нулевой, степени.

Вычитание производится также по разрядам, начиная с низшего, причем если цифра уменьшаемого меньше цифры вычитаемого, то из следующего разряда уменьшаемого "занимается" единица и из полученного двузначного числа вычитается соответствующая цифра вычитаемого; при вычитании цифр следующего разряда в этом случае нужно мысленно уменьшить цифру уменьшаемого на единицу, если же эта цифра оказалась нулем (и тогда уменьшение ее невозможно), то следует "занять" единицу из следующего разряда и затем произвести уменьшение на единицу. Специальной таблицы для вычитания составлять не нужно, так как таблица сложения дает результаты вычитания.

Например,

1.5.2 Умножение и деление

Для выполнения действий умножения и деления в системе с основанием с составляется таблица умножения однозначных чисел.

Например, таблица умножения в шестеричной системе счисления:

Умножение двух произвольных чисел в системе с основанием с производится так же, как в десятичной системе - "столбиком", то есть множимое умножается на цифру каждого разряда множителя (последовательно) с последующим сложением этих промежуточных результатов.

Например,

При умножении многозначных чисел в промежуточных результатах индекс основания не ставится:

Деление в системах с основанием с производится углом, так же, как в десятичной системе счисления. При этом используется таблица умножения и таблица сложения соответствующей системы. Сложнее дело обстоит, если результат деления не является конечной с-ичной дробью (или целым числом). Тогда при осуществлении операции деления обычно требуется выделить непериодическую часть дроби и ее период. Умение выполнять операцию деления в с-ичной системе счисления полезно при переводе дробных чисел из одной системы счисления в другую.

Например:

1.6 Перевод чисел из одной системы счисления в другую

Существует много различных способов перевода чисел из одной системы счисления в другую.

Способ деления.

Пусть дано число N=a n a n -1 . . . a 1 а 0 р.

Для получения записи числа N в системе с основанием h следует представить его в виде:

N=b m h m +b m -1 h m -1 +... +b 1 h+b 0 (1)

где 1

N=b m b m -1 ... b 1 b o h (2)

Из (1) получаем:

N= (b m h m -1 +...+b)*h +b 0 = N 1 h+b 0 , где 0? b 0 ?h (3)

To есть цифра b 0 является остатком от деления числа N на число h. Неполное частное N l = b m h m -1 + . . . +b 1 представим в виде:

N l = (b m h m -2 + ... + b 2)h + b 1 = N 2 h+b 1 , где 0? b 2 ?h (4)

Таким образом, цифра b i в записи (2) числа N является остатком от деления первого неполного частного N 1 на основание h новой системы счисления. Второе неполное частное N 2 представим в виде:

N 2 = (b m h m - 3 + ... +b 3)h+b 2 , где 0? b 2 ?h (5)

то есть цифра b 2 является остатком от деления второго неполного частного N 2 на основание h новой системы. Так как не полные частные убывают, то этот процесс конечен. И тогда мы получаем N m = b m , где b m

N m -1 = b m h+b m . 1 = N m h+b m . 1

Таким образом, последовательность цифр b m , b m -1 . . ,b 1 ,b 0 в записи числа N в системе счисления с основанием h есть последовательность остатков последовательного деления числа N на основание h, взятая в обратной последовательности.

Рассмотрим пример: Выполнить перевод числа 123 в шестнадцатеричную систему счисления:

Таким образом, число 123 10 =7(11) 16 либо можно записать как 7B 16

Запишем число 34022 7 в пятеричной системе счисления:

Таким образом, получаем, что 34022 7 =233331 5

Перевод с использованием десятичной системы счисления.

Любое число в любой системе счисления представимо в виде:

N = a n p n +...+a 1 p+a 0

Таким образом, имея запись числа в таком виде, мы легко можем перевести его в привычную нам десятичную систему счисления. Например

2209 5 =2*5 3 +2*5 2 +0*5 1 +9*5 0 =309 10

Так же, число, представленное в десятичной системе счисления, мы можем расписать по степеням любого другого основания:

220809 7 =2*7 5 +2*7 4 +0*7 3 +8*7 2 +0*7 1 +9*7 0 =38817 7

Таким способом можно перевести числа из одной системы в другую. Например: переведем число 625 7 в 3-ичную систему счисления.

625 7 =6 * 7 2 +2*7 1 +5*7 0 =6*49+2*7+5=31310

313 10 =1*3 5 +0*3 4 +2*3 3 +1*3 2 +2*3 1 +1*3 0 =1*243+2*27+1*9+2*3+1=102120 3

Ответ: 625т=102120 3

Систематические дроби. Перевод дробей в различные системы счисления.

Известно, что десятичная дробь отличается от целого числа только наличием запятой, отделяющей целую часть от дробной, и такое сходство не случайно.

Можно сказать, что запись дробного числа в виде десятичной дроби представляет собой перенесение общего принципа записи чисел в позиционной десятичной системе счисления на дробные числа.

В самом общем случае смешанное число, содержащее целую и дробную части, представляется в виде суммы степеней десятки и

Десятичные дроби являются частным случаем систематических дробей, которые можно строить аналогичным образом для любой позиционной системы счисления.

Например, дробь 5 -1 + 6 -2 + 3 -3 назвать восьмеричной и записать в виде: 0,563 8 .

Правила арифметических действий над с - ичными дробями (основание системы - q) такие же, как и над десятичными, но при действиях с однозначными числами нужно пользоваться таблицами сложения и умножения для данной системы.

Следует заметить, что не всякая простая дробь может быть записана в виде конечной десятичной дроби. Это явление наблюдается и в других позиционных системах счисления. При этом одно и то же число может в одной системе счисления записываться в виде конечной дроби, а в другой - в виде бесконечной.

Например:

При переводе дробей из одной позиционной системы счисления в другую необходимо иметь в виду возможность получения бесконечных дробей.

Общее правило перевода числа в систему счисления с основанием n:

Для перевода целого числа в систему счисления с основанием n его надо последовательно делить на n (отбрасывая остатки), при переводе дроби, меньшей единицы - последовательно умножить на n (отбрасывая целые). Цифрами числа в n - ичной системе счисления в первом случае будут остатки, записанные в обратном порядке, а во втором - целые части, записанные в порядке их получения. Целые и дробные части в смешанном числе переводятся отдельно.

Пример: 378,8359375 10 перевести в систему счисления с основанием q=8

Итак, 378,8359375 10 =572,654 8

Быстрый перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.

Перевод чисел между системами счисления, основания которых являются степенями числа 2, может производиться более простым алгоритмом.

Для записи двоичных чисел используют две цифры, то есть в каждом разряде числа возможны два варианта записи. Для записи восьмеричных чисел используется восемь цифр, то есть возможны восемь вариантов. А для записи шестнадцатеричных чисел используется 16 цифр, то есть 16 возможных вариантов.

Таким образом, для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа налево, а затем преобразовать каждую группу в восьмеричную цифру. Если в последней, левой, группе окажется меньше трех цифр, то нужно его дополнить нулями слева.

100 101 000 010 2

111 111 101 000 010 000 100 2

А для перевода целого двоичного числа в шестнадцатеричное, число разбивают на группы по 4 цифры и следуют тому же алгоритму, что и с

восьмеричной системой счисления.

Например:

1001 0000 1100 0111 0001 2

Например:

1111 1001 1101 000 2

Данное правило работает и наоборот, то есть любое целое число можно перевести из восьмеричной в двоичную и из шестнадцатеричной в двоичную.

Например:

Идентификация параметров осциллирующих процессов в живой природе, моделируемых дифференциальными уравнениями

Комплексные числа: их прошлое и настоящее

Логически строгую теорию комплексных чисел построил в XIX в (1835 г) ирландский математик Вильям Роумен Гамильтон. По Гамильтону комплексные числа - это упорядоченные пары z=(x,y) действительных чисел...

Линейные алгебры малых размерностей

Теорема. Следующие условия на алгебру Ли L над кольцом К эквивалентны (с - некоторое натуральное число): 1. Lс {0}, Lс+1={0}; 2. Zc-1(L) L, Zc(L)=L; 3. L обладает конечным центральным рядом длины с и не обладает таким рядом длины с -1; 4...

Математика в средние века

Пользование счетной доской избавляло от необходимости применения таблиц сложения. Поэтому в текстах зафиксированы лишь правила умножения и деления. Пример на умножение: =. Действия производятся, начиная со старших, а не с младших разрядов...

Проектирование уроков математики по теме "Нумерация" с использованием современных средств обучения

Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел позаимствовала арабская нация, у них, в свою очередь...

Решение математических задач средствами Excel

Упражнение №21. Условие: Вычислить:. Решение: 1) В свободные ячейки вводим комплексные числа 2 + 4i,-3-2i,1-2i,-2+4i. 2) Выделим свободную ячейку и воспользуемся функцией "МНИМ.ПРОИЗВЕД". 3) Выделим свободную ячейку и воспользуемся функцией "МНИМ.РАЗН"...

Система счисления - это способ записи (изображения) чисел. Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на две группы: · позиционные, · непозиционные...

Система счисления. Запись действий над числами

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами...

Система счисления. Запись действий над числами

Двоичная система счисления была придумана математиками и философами ещё до появления компьютеров (XVII -- XIX вв.). Некоторые идеи, лежащие в основе двоичной системы, по существу были известны в Древнем Китае...

Система счисления. Запись действий над числами

Наиболее часто встречающиеся системы счисления - это двоичная, шестнадцатеричная и десятичная и восьмеричная...

1.1 История возникновения различных систем счисления Первобытному человеку считать почти не приходилось. "Один", "два" и "много" - вот все его числа. Но нам - современным людям - приходится иметь дело с числами буквально на каждом шагу...

Системы счисления и основы двоичных кодировок

Система счисления (Нумерация) - это способ представления числа символами некоторого алфавита, которые называются цифрами. Путем длительного развития человечество пришло к двум видам систем счисления: позиционной и не позиционной...

Системы счисления и основы двоичных кодировок

В самой древней нумерации употреблялся лишь знак "|" для единицы, и каждое натуральное число записывалось повторением символа единицы столько раз, сколько единиц содержится в этом числе...

Системы счисления и основы двоичных кодировок

Кроме десятичной системы счисления возможны позиционные системы счисления с любым другим натуральным основанием. В разные исторические периоды многие народы широко использовали различные системы счисления...

Урок зачет как одна из форм контроля учебных достижений семиклассников по алгебре

Существуют различные системы контроля: устный и письменный опрос, математический диктант, итоговые контрольные работы, тесты, зачеты, экзамены, повседневные наблюдения за учебной работой учащихся, проверка домашней работы...

Т.к. в двоичной системе счисления в записи чисел используются только 2 цифры – 0 и 1, значит при сложении 1 + 1 в младшем разряде записывается 0, а 1 переходит в старший разряд.

По аналогии с 10-сс: 9 + 1 (цифры десять нет в записи чисел), записывается 0 и 1 в старшем разряде, получается 10.

Примеры

1) Сложим в столбик 10110 2 и 111011 2 . Единицы сверху обозначают перенос из предыдущего разряда:

2) Выполнить сложение для следующих двоичных чисел:

3) Сложить числа:10000000100 2 + 111000010 2 и выполнить проверку

10000000100 2 + 111000010 2 = 10111000110 2 .

Выполним проверку результатов расчетов переводом в десятичную систему счисления. Для этого переведем каждое слагаемое и сумму в десятичную систему счисления, выполним сложение слагаемых в десятичной системе счисления. Результат должен совпасть с суммой.

10000000100 2 = 1 × 2 10 + 1 × 2 2 = 1024 + 4 = 1028 10

111000010 2 = 1× 2 8 + 1× 2 7 + 1× 2 6 + 1 × 2 1 = 256 + 128 + 64 + 2 = 450 10

10111000110 2 = 1 × 2 10 + 1 × 2 8 + 1 × 2 7 + 1 × 2 6 + 1 × 2 2 + 1 × 2 1 =

1024 + 256 + 128 + 64 + 4 + 2 =1478 10

1028 10 + 450 10 =1478 10 .

Результаты совпадают, следовательно, вычисления в двоичной системе счисления выполнены верно.

Восьмеричные числа

Таблица сложения восьмеричных чисел

+

При вычислениях в восьмеричной системе нужно помнить, что максимальная цифра – это 7. Перенос при сложении возникает тогда, когда сумма в очередном разряде получается больше 7. Заем из старшего разряда равен 10 8 = 8, а все «промежуточные» разряды заполняются цифрой 7 – старшей цифрой системы счисления.

Пример

1) В примере запись 1⋅8 + 2 означает, что получилась сумма, большая 7, которая не помещается в один разряд. Единица идет в перенос, а двойка остается в этом разряде.

2) Выполнить сложение 223,2 8 + 427,54 8 и осуществить проверку полученного результата.

223,2 8 + 427,54 8 = 652,74 8 .

Выполним проверку результатов расчетов переводом в десятичную систему счисления:

223,2 8 = 2 × 8 2 + 2 × 8 1 + 3 × 8 0 + 2 × 8 -1 = 128 + 16 + 3 + 0,25 =

427,54 8 = 4 × 8 2 + 2 × 8 1 + 7 × 8 0 + 5 × 8 -1 + 4 × 8 -2 =

256 + 16 + 7 + 0,625 + 0,0625= 279,6875 10

652,74 8 = 6 × 8 2 + 5 × 8 1 + 2 × 8 0 + 7 × 8 -1 + 4 × 8 -2 =

384 + 40 + 2 + 0,875 + 0,0625 = 426,9375 10

147,25 10 + 279,6875 10 =426,9375 10

Результаты совпадают, следовательно, вычисления в восьмеричной системе счисления выполнены верно.

Шестнадцатеричные числа

Таблица сложения шестнадцатеричных чисел

+ A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A A B C D E F
B B C D E F 1A
C C D E F 1A 1B
D D E F 1A 1B 1C
E E F 1A 1B 1C 1D
F F 1A 1B 1C 1D 1E

При выполнении сложения нужно помнить, что в системе с основанием 16 перенос появляется тогда, когда сумма в очередном разряде превышает 15. Удобно сначала переписать исходные числа, заменив все буквы на их численные значения.

Примеры

2) Выполнить сложение 3B3,6 16 + 38B,4 16 и осуществить проверку

3B3,6 16 + 38B,4 16 = 73E,A 16 .

Выполним проверку:

3B3,6 16 = 3 × 16 2 + 11 × 16 1 + 3 × 16 0 + 6 × 16 -1 = 768 + 176 +

3 + 0,375 = 947,375 10

38B,4 16 = 3 × 16 2 + 8 × 16 1 + 11 × 16 0 + 4 × 16 -1 = 768 + 128 +

11 + 0,25 = 907,25 10

73E,A 16 = 7 × 8 2 + 3 × 8 1 + 14 × 8 0 + 10 × 8 -1 = = 1792 + 48 + 14 + 0,625 = 1854,625 10

947,375 10 + 907,25 10 = 1854,625 10 .

Результаты совпадают, следовательно, вычисления в шестнадцатеричной системе счисления выполнены верно.

Вычитание

Двоичные числа

Вычитание выполняется почти так же, как и в десятичной системе. Вот основные правила:

0 – 0 = 0, 1 – 0 = 1, 1 – 1 = 0, 10 2 – 1 = 1.

В последнем случае приходится брать заем из предыдущего разряда.

Вычитание производится по аналогии с десятичной системой счисления.

Чтобы понять принцип, временно вернемся к десятичной системе. Вычтем в столбик из числа 21 число 9:

Поскольку из 1 нельзя вычесть 9, нужно взять заем из предыдущего разряда, в котором стоит 2. В результате к младшему разряду добавляется 10, а в следующем 2 уменьшается до 1. Теперь можно выполнить вычитание: 1 + 10 – 9 = 2. В старшем разряде вычитаем из оставшейся единицы ноль:

Более сложный случай – заем из дальнего (не ближайшего) разряда. Вычтем 9 из 2001. В этом случае занять из ближайшего разряда не удается (там 0), поэтому берем заем из того разряда, где стоит цифра 2. Все промежуточные разряды в результате заполняются цифрой 9, это старшая цифра десятичной системы счисления:

В двоичной системе счисления, когда берется заем, в «рабочий» разряд добавляется уже не 10, а 102 = 2 (основание системы счисления), а все «промежуточные» разряды (между «рабочим» и тем, откуда берется заем) заполняются не девятками, а единицами (старшей цифрой системы счисления).

Примеры

Если требуется вычесть большее число из меньшего, вычитают меньшее из большего и ставят у результата знак «минус»:

3) 4)

Восьмеричные числа

1)

При вычитании «– 1» означает, что из этого разряда раньше был заем (его значение уменьшилось на 1), а «+ 8» – заем из следующего разряда.

2) Вычитание

Шестнадцатеричные числа

При вычитании заем из старшего разряда равен 10 16 = 16, а все «промежуточные» разряды заполняются цифрой F – старшей цифрой системы счисления.

Например,

1)

2)

Умножение

Двоичные числа

х

Умножение и деление столбиком в двоичной системе выполняются практически так же, как и в десятичной системе (но с использованием правил двоичного сложения и вычитания).

Например,

1) 2)

Восьмеричные числа

Восьмеричная таблица умножения

´

С помощью восьмеричной таблицы умножения пользуясь теми же правилами, которые применяются в десятичной системе счисления, производятся умножение и деление восьмеричных многоразрядных чисел.

Пример

Шестнадцатеричные числа

Таблица умножения

´ A B C D E F
A B C D E F
A C E 1A 1C 1E
C F 1B 1E 2A 2D
C 1C 2C 3C
A F 1E 2D 3C 4B
C 1E 2A 3C 4E 5A
E 1C 2A 3F 4D 5B
1B 2D 3F 5A 6C 7E
A A 1E 3C 5A 6E 8C
B B 2C 4D 6E 8F 9A A5
C C 3C 6C 9C A8 B4
D D 1A 4E 5B 8F 9C A9 B6 C3
E E 1C 2A 7E 8C 9A A8 B6 C4 D2
F F 1E 2D 3C 4B 5A A5 B4 C3 D2 E1

Пример

Деление отдельно в десятичную систему, так как для чисел от 0 до 7 их восьмеричная запись совпадает с десятичной);

3) Складываем

Решение (через шестнадцатеричную систему):

1) (сначала перевели в двоичную систему, потом двоичную запись числа разбили на тетрады справа налево , каждую тетраду перевели в шестнадцатеричную систему; при этом тетрады можно переводить из двоичной системы в десятичную, а затем заменить все числа, большие 9, на буквы – A, B, C, D, E, F);

2) , никуда переводить не нужно;

3) складываем

4) переводим в шестнадцатеричную систему все ответы:

121 8 = 001 010 001 2 = 0101 0001 2 = 51 16 (перевели в двоичную систему по триадам, разбили на тетрады справа налево, каждую тетраду перевели отдельно в десятичную систему, все числа, большие 9, заменили на буквы – A, B, C, D, E, F).

171 2 = 001 111 001 2 = 0111 1001 2 = 79 16 ,

69 16 , переводить не нужно

1000001 2 = 0100 0001 2 = 41 16 .

Системы счисления

Система счисления – совокупность приемов и правил для записи чисел цифровыми знаками или символами.

Все системы счисления можно разделить на два класса: позиционные и непозиционные . В классе позиционных систем для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называется основанием системы счисления. Ниже приведена таблица, содержащая наименования некоторых позиционных систем счисления и перечень знаков (цифр), из которых образуются в них числа.

Некоторые системы счисления

Основание Система счисления Знаки
Двоичная 0,1
Троичная 0, 1, 2
Четверичная 0, 1, 2, 3
Пятеричная 0, 1, 2, 3, 4
Восьмеричная 0, 1, 2, 3, 4, 5, 6, 7
Десятичная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Двенадцатеричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
Шестнадцатеричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

В позиционной системе счисления относительной позиции цифры в числе ставится в соответствие весовой множитель, и число может быть представлено в виде суммы произведений коэффициентов на соответствующую степень основания системы счисления (весовой множитель):

A n А n–1 A n–2 ...A 1 A 0 , A –1 A –2 ... =

A n B n + A n-1 B n-1 + ... + A 1 B 1 + A 0 B 0 + A –1 B –1 + A –2 B –2 + ...

(знак «,» отделяет целую часть числа от дробной. Таким образом, значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Именно поэтому такие системы счисления называют позиционными).

Позиционная система счисления – система, в которой величина числа определяется значениями входящих в него цифр и их относительным положением в числе.

23,45 10 = 2 ⋅ 10 1 + 3 ⋅ 10 0 + 4 ⋅ 10 –1 + 5 ⋅ 10 –2 .

Десятичный индекс внизу указывает основание системы счисления.

692 10 = 6 ⋅ 10 2 + 9 ⋅ 10 1 + 2 ⋅ 10 0 ;

1101 2 = 1 ⋅ 2 3 + 1 ⋅ 2 2 + 0 ⋅ 2 1 + 1 ⋅ 2 0 = 13 10 ;

112 3 = 1 ⋅ 3 2 + 1 ⋅ 3 1 + 2 ⋅ 3 0 = 14 10 ;

341,5 8 = 3 ⋅ 8 2 + 4 ⋅ 8 1 + 1 ⋅ 8 0 + 5 ⋅ 8 –1 = 225,125 10 ;

A1F,4 16 = А ⋅ 16 2 + 1 ⋅ 16 1 + F ⋅ 16 0 + 4 ⋅ 16 –1 = 2591,625 10 .

При работе с компьютерами приходится параллельно использовать несколько позиционных систем счисления (чаще всего двоичную, десятичную, восьмеричную и шестнадцатеричную), поэтому большое практическое значение имеют процедуры перевода чисел из одной системы счисления в другую. Заметим, что во всех приведенных выше примерах результат является десятичным числом, и, таким образом, способ перевода чисел из любой позиционной системы счисления в десятичную уже продемонстрирован.



В общем случае, чтобы перевести целую часть числа из десятичной системы в систему с основанием В, необходимо разделить ее на В. Остаток даст младший разряд числа. Полученное при этом частное необходимо вновь разделить на В – остаток даст следующий разряд числа и т.д. Деления продолжают до тех пор, пока частное не станет меньше основания. Значения получившихся остатков, взятые в обратной последовательности, образуют искомое двоичное число.

Пример перевода целой части: Перевести 25 10 в число двоичной системы.

25 / 2 = 12 с остатком 1,

12 / 2 = 6 с остатком 0,

6 /2 = 3 с остатком 0,

Целая и дробная части переводятся порознь. Для перевода дробной части ее необходимо умножить на В. Целая часть полученного произведения будет первым (после запятой, отделяющей целую часть от дробной) знаком. Дробную же часть произведения необходимо вновь умножить на В. Целая часть полученного числа будет следующим знаком и т.д.

Для перевода дробной части (или числа, у которого «0» целых) надо умножить ее на 2. Целая часть произведения будет первой цифрой числа в двоичной системе. Затем, отбрасывая у результата целую часть, вновь умножаем на 2 и т.д. Заметим, что конечная десятичная дробь при этом вполне может стать бесконечной (периодической) двоичной.

Пример перевода дробной части: Перевести 0,73 10 в число двоичной системы.

0,73 ⋅ 2 = 1,46 (целая часть 1),

0,46 ⋅ 2 = 0,92 (целая часть 0),

0,92 ⋅ 2 = 1,84 (целая часть 1),

0,84 ⋅ 2 = 1,68 (целая часть 1) и т.д.

Таким образом: 0,73 10 = 0,1011 2 .

Над числами, записанными в любой системе счисления, можно производить различные арифметические операции. Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.



Рассмотрим сложение двух чисел с основание десять:

При сложении числа 6 и 7 результат можно представить, как выражение 10 + 3, где 10, является полным основанием для десятичной системы счисления. Заменим 10 (основание) на 1 и подставим слева от цифры 3. Получится:

6 10 + 7 10 = 13 10 .

Рассмотрим сложение двух чисел с основание восемь:

При сложении числа 6 и 7 результат можно представить, как выражение 8 + 5, где 8, является полным основанием для восьмеричной системы счисления. Заменим 8 (основание) на 1 и подставим слева от цифры 5. Получится:

6 8 + 7 8 = 15 8 .

Рассмотрим сложение двух больших чисел с основание восемь:

Сложение начинается с младшего разряда. Итак, 4 8 + 6 8 представляем, как 8 (основание) + 2. Заменяем 8 (основание) на 1 и добавляем эту единицу к цифрам старшего разряда. Далее складываем следующие разряды: 5 8 + 3 8 + 1 8 представляем, как 8 + 1, заменяем 8 (основание) на 1 и добавляем ее к старшему разряду. Далее, 2 8 + 7 8 + 1 8 представляем, как 8 (основание) + 2, заменяем 8 (основание) на 1 и подставляем слева от получившегося числа (в позицию старшего разряда). Таким образом, получается:

254 8 + 736 8 = 1212 8 .

276 8 + 231 8 = 527 8 ,

4A77 16 + BF4 16 = 566B 16 ,

1100110 2 + 1100111 2 = 11001101 2 .

Другие арифметические операции (вычитание, умножение и деление) в различных системах счисления выполняются аналогично.

Рассмотрим умножение «столбиком», на примере двух чисел двоичной системы:

11101 2 · 101 2

Записываем числа друг под другом, в соответствии с разрядами. Затем производим поразрядное перемножение второго множителя на первый и записываем со смещением влево, так же, как при умножении десятичных чисел. Остается сложить «смещенные» числа, учитывая основание чисел, в данном случае двоичное.

преобразуем получившийся результат к основанию 16.

Во втором разряде 29 представляем, как 16 (основание) и 13 (D). Заменим 16 (основание) на 1 и добавим к старшему разряду.

В третьем разряде 96 + 1 = 97. Затем 97 представим, как 6 · 16 (основание) и 1. Добавим 6 старшему разряду.

В четвертом разряде 20 + 6 = 26. Представим 26, как 16 (основание) и 10 (А). Единицу переносим в старший разряд.

При определенных навыках работы с различными системами счисления запись можно было сразу представить, как

A
B B
A D

Таким образом, A31 16 · 29 16 = 1A1D9 16 .

527 8 – 276 8 = 231 8 ,

566B 16 – 4A77 16 = BF4 16 ,

11001101 2 – 1100110 2 = 1100111 2 ,

276 8 · 231 8 = 70616 8 ,

4A77 16 · BF4 16 = 37A166C 16 ,

1100110 2 · 1100111 2 = 10100100001010 2 .

С точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые системы (двоичная, восьмеричная и шестнадцатеричная) представляют большой интерес, хотя компьютер обрабатывает данные только преобразованные к двоичному коду (двоичная система счисления). Однако, часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатеричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста – гораздо проще переводов между любой из этих трех систем и десятичной.

Представим числа различных систем счисления соответственно друг другу:

Десятичная Шестнадцатеричная Восьмеричная Двоичная
A
B
C
D
E
F

Из таблицы видно, что числа системы с основанием 2, 8 и 16 имеют периодические закономерности. Так, восемь значений восьмеричной системы, то есть (от 0 до 7 или полное основание) соответствуют трем разрядам (триады ) двоичной системы. Таким образом, для описания чисел одного разряда восьмеричной системы требуется ровно три разряда двоичной. Аналогично и с числами шестнадцатеричной системы. Только для их описания требуется ровно четыре разряда (тетрады ) двоичной системы.

Отсюда следует, что для перевода любого целого двоичного числа в восьмеричное, необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент.

Например, требуется перевести 11011001 2 в восьмеричную систему.

Разбиваем число на группы по три цифры 011 2 , 011 2 и 001 2 . Подставляем соответствующие цифры восьмеричной системы. Получаем 3 8 , 3 8 и 1 8 или 331 8 .

11011001 2 = 331 8 .

Аналогично осуществляются и обратные переводы, например:

Перевести AB5D 16 в двоичную систему счисления.

Поочередно заменяем каждый символ числа AB5D 16 на соответствующее число из двоичной системы. Получим 1010 16 , 1011 16 , 0101 16 и 1101 16 или 1010101101011101 2 .

AB5D 16 = 1010101101011101 2 .

Кроме рассмотренных выше позиционных систем счисления существуют такие, в которых значение знака не зависит от того места, которое он занимает в числе. Такие системы счисления называются непозиционными . Наиболее известным примером непозиционной системы являетсяримская . В этой системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам:

Правила записи чисел римскими цифрами : – если большая цифра стоит перед меньшей, то они складываются (принцип сложения), – если меньшая цифра стоит перед большей, то меньшая вычитается из большей (принцип вычитания).

Второе правило применяется для того, чтобы избежать четырёхкратного повторения одной и той же цифры. Так, римские цифры I, Х, С ставятся соответственно перед Х, С, М для обозначения 9, 90, 900 или перед V, L, D для обозначения 4, 40, 400.

Примеры записи чисел римскими цифрами:

IV = 5 - 1 = 4 (вместо IIII),

XIX = 10 + 10 - 1 = 19 (вместо XVIIII),

XL = 50 - 10 =40 (вместо XXXX),

XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33 и т.д.

Следует отметить, что выполнение даже простых арифметических действий над многозначными числами римскими цифрами весьма неудобно. Вероятно, сложность вычислений в римской системе, основанной на использовании латинских букв, стала одной из веских причин замены ее на более удобную в этом плане десятичную систему.

3.1 Основанием системы счисления называется...

Совокупность приемов и правил для записи чисел цифровыми знаками или символами

Число знаков использующиеся в определенной позиционной системе счисления

Делитель, использующийся при переводе чисел из одной системы счисления в другую

Общий множитель, при переводе чисел из одной системы счисления в другую

3.2 Какая система счисления не нашла широкого применения в компьютерной технике

Восьмеричная

Двоичная

Пятеричная

Шестнадцатеричная

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же правилам. Для проведения арифметических операций над числами, представленными в различных системах счисления, необходимо предварительно преобразовать их в одну систему счисления и учесть то, что перенос в следующий разряд при операции сложения и заем из старшего разряда при операции вычитания определяется величиной основания системы счисления.

Арифметические операции в двоичной системе счисления основаны на таблицах сложения, вычитания и умножения одноразрядных двоичных чисел.

При сложении двух единиц происходит переполнение разряда и производится перенос единицы в старший разряд, при вычитании 0–1 производится заем из старшего разряда, в таблице «Вычитание» этот заем обозначен 1 с чертой над цифрой (Таблица 3).

Таблица 3

Ниже приведены примеры выполнения арифметических операций над числами, представленными в различных системах счисления:

Арифметические операции над целыми числами, представленными в различных системах счисления, достаточно просто реализуются с помощью программ Калькулятор и MS Excel.

1.3. Представление чисел в компьютере

Числовые данные обрабатываются в компьютере в двоичной системе счисления. Числа хранятся в памяти компьютера в двоичном коде, т. е. в виде последовательности нулей и единиц, и могут быть представлены в формате с фиксированной или плавающей запятой.

Целые числа хранятся в памяти в формате с фиксированной запятой. При таком формате представления чисел для хранения целых неотрицательных чисел отводится регистр памяти, состоящий из восьми ячеек памяти (8 бит). Каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда и вне разрядной сетки. Например, число 110011012 будет храниться в регистре памяти следующим образом:

Таблица 4

Максимальное значение целого неотрицательного числа, которое может храниться в регистре в формате с фиксированной запятой, можно определить из формулы: 2n – 1, где n – число разрядов числа. Максимальное число при этом будет равно 28 – 1 = 25510 = 111111112и минимальное 010 = 000000002. Таким образом, диапазон изменения целых неотрицательных чисел будет находиться в пределах от 0 до 25510.

В отличие от десятичной системы в двоичной системе счисления при компьютерном представлении двоичного числа отсутствуют символы, обозначающие знак числа: положительный (+) или отрицательный (-), поэтому для представления целых чисел со знаком в двоичной системе используются два формата представления числа: формат значения числа со знаком и формат дополнительного кода. В первом случае для хранения целых чисел со знаком отводится два регистра памяти (16 бит), причем старший разряд (крайний слева) используется под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное, то – 1. Например, число 53610 = 00000010000110002 будет представлено в регистрах памяти в следующем виде:

Таблица 5

а отрицательное число -53610 = 10000010000110002 в виде:

Таблица 6

Максимальное положительное число или минимальное отрицательное в формате значения числа со знаком (с учетом представления одного разряда под знак) равно 2n-1 – 1 = 216-1 – 1 = 215 – 1 = 3276710 = 1111111111111112 и диапазон чисел будет находиться в пределах от -3276710 до 32767.

Наиболее часто для представления целых чисел со знаком в двоичной системе применяется формат дополнительного кода, который позволяет заменить арифметическую операцию вычитания в компьютере операцией сложения, что существенно упрощает структуру микропроцессора и увеличивает его быстродействие.

Для представления целых отрицательных чисел в таком формате используется дополнительный код, который представляет собой дополнение модуля отрицательного числа до нуля. Перевод целого отрицательного числа в дополнительный код осуществляется с помощью следующих операций:

1) модуль числа записать прямым кодом в n (n = 16) двоичных разрядах;

2) получить обратный код числа (инвертировать все разряды числа, т. е. все единицы заменить на нули, а нули – на единицы);

3) к полученному обратному коду прибавить единицу к младшему разряду.

Например, для числа -53610 в таком формате модуль будет равен 00000010000110002, обратный код – 1111110111100111, а дополнительный код – 1111110111101000.

Необходимо помнить, что дополнительный код положительного числа – само число.

Для хранения целых чисел со знаком помимо 16-разрядного компьютерного представления, когда используются два регистра памяти (такой формат числа называется также форматом коротких целых чисел со знаком), применяются форматы средних и длинных целых чисел со знаком. Для представления чисел в формате средних чисел используется четыре регистра (4 х 8 = 32 бит), а для представления чисел в формате длинных чисел – восемь регистров (8 х 8 = 64 бита). Диапазоны значений для формата средних и длинных чисел будут соответственно равны: -(231 – 1) … + 231 – 1 и -(263-1) … + 263 – 1.

Компьютерное представление чисел в формате с фиксированной запятой имеет свои преимущества и недостатки. К преимуществам относятся простота представления чисел и алгоритмов реализации арифметических операций, к недостаткам – конечный диапазон представления чисел, который может быть недостаточным для решения многих задач практического характера (математических, экономических, физических и т. д.).

Вещественные числа (конечные и бесконечные десятичные дроби) обрабатываются и хранятся в компьютере в формате с плавающей запятой. При таком формате представления числа положение запятой в записи может изменяться. Любое вещественное число К в формате с плавающей запятой может быть представлено в виде:

где А – мантисса числа; h – основание системы счисления; p – порядок числа.

Выражение (2.7) для десятичной системы счисления примет вид:

для двоичной -

для восьмеричной -

для шестнадцатеричной -

Такая форма представления числа также называется нормальной . С изменением порядка запятая в числе смещается, т. е. как бы плавает влево или вправо. Поэтому нормальную форму представления чисел называют формой с плавающей запятой . Десятичное число 15,5, например, в формате с плавающей запятой может быть представлено в виде: 0,155 · 102; 1,55 · 101; 15,5 · 100; 155,0 · 10-1; 1550,0 · 10-2 и т. д. Эта форма записи десятичного числа 15,5 с плавающей запятой не используется при написании компьютерных программ и вводе их в компьютер (устройства ввода компьютеров воспринимают только линейную запись данных). Исходя из этого выражение (2.7) для представления десятичных чисел и ввода их в компьютер преобразовывают к виду

где Р – порядок числа,

т. е. вместо основания системы счисления 10 пишут букву Е, вместо запятой – точку, и знак умножения не ставится. Таким образом, число 15,5 в формате с плавающей запятой и линейной записи (компьютерное представление) будет записано в виде: 0.155Е2; 1.55Е1; 15.5Е0; 155.0Е-1; 1550.0Е-2 и т.д.

Независимо от системы счисления любое число в форме с плавающей запятой может быть представлено бесконечным множеством чисел. Такая форма записи называется ненормализованной . Для однозначного представления чисел с плавающей запятой используют нормализованную форму записи числа, при которой мантисса числа должна отвечать условию

где |А| - абсолютное значение мантиссы числа.

Условие (2.9) означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля, или, другими словами, если после запятой в мантиссе стоит не нуль, то число называется нормализованным. Так, число 15,5 в нормализованном виде (нормализованная мантисса) в форме с плавающей запятой будет выглядеть следующим образом: 0,155 · 102, т. е. нормализованная мантисса будет A = 0,155 и порядок Р = 2, или в компьютерном представлении числа 0.155Е2.

Числа в форме с плавающей запятой имеют фиксированный формат и занимают в памяти компьютера четыре (32 бит) или восемь байт (64 бит). Если число занимает в памяти компьютера 32 разряда, то это число обычной точности, если 64 разряда, то это число двойной точности. При записи числа с плавающей запятой выделяются разряды для хранения знака мантиссы, знака порядка, мантиссы и порядка. Количество разрядов, которое отводится под порядок числа, определяет диапазон изменения чисел, а количество разрядов, отведенных для хранения мантиссы, – точность, с которой задается число.

При выполнении арифметических операций (сложение и вычитание) над числами, представленными в формате с плавающей запятой, реализуется следующий порядок действий (алгоритм) :

1) производится выравнивание порядков чисел, над которыми совершаются арифметические операции (порядок меньшего по модулю числа увеличивается до величины порядка большего по модулю числа, мантисса при этом уменьшается в такое же количество раз);

2) выполняются арифметические операции над мантиссами чисел;

3) производится нормализация полученного результата.

Арифметические операции в позиционных системах счисления

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 110 2 и 11 2:

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим:

110 2 = 1 × 2 2 + 1 × 2 1 + 0 × 2 0 = 6 10 ;

11 2 = 1 × 2 1 + 1 × 2 0 = 3 10 ;

6 10 + 3 10 = 9 10 .

Теперь переведем результат двоичного сложения в десятичное число:

1001 2 = 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0 = 9 10 .

Сравним результаты - сложение выполнено правильно.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 110 2 на 11 2:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходимо предварительно перевести их в одну и ту же систему.

Задания

1.22. Провести сложение, вычитание, умножение и деление двоичных чисел 1010 2 и 10 2 и проверить правильность выполнения арифметических действий с помощью электронного калькулятора.

1.23. Сложить восьмеричные числа: 5 8 и 4 8 , 17 8 и 41 8 .

1.24. Провести вычитание шестнадцатеричных чисел: F 16 и А 16 , 41 16 и 17 16 .

1.25. Сложить числа: 17 8 и 17 16 , 41 8 и 41 16